

Journal of Organometallic Chemistry 649 (2002) 246-251

www.elsevier.com/locate/jorganchem

Silatetrazoline: Eigenschaften und Strukturen cyclischer thermostabiler Tetrazenderivate

Hans-Wolfram Lerner^{a,*}, Michael Bolte^{b,1}, Nils Wiberg^c

^a Institut für Anorganische Chemie, Johann Wolfgang Goethe-Universität Frankfurt am Main, Marie-Curie-Straße 11, 60439 Frankfurt am Main, Germany

^b Institut für Organische Chemie, Johann Wolfgang Goethe-Universität Frankfurt am Main, Marie-Curie-Straße 11, 60439 Frankfurt am Main, Germany

^c Department für Chemie der Universität München, Butenandtstraße 5-13 (Haus D), 81377 München, Germany

Eingegangen am 2 November 2001; eingegangen in revidierter Form am 26 November 2001; akzeptiert am 4 Dezember 2001

Zusammenfassung

Treatment of Me₂SiBr-CBr(SiMe₃)₂ with *n*-BuLi in the presence of 'Bu₂MeSiN₃ (Et₂O at -110 °C) leads to the Silanimine $Me_2Si=N(SiMe'Bu_2)$, which reacts at -40 °C with 'BuMe_2SiN₃ or 'Bu₂MeSiN₃ to the silatetrazolines Me₂Si=N(SiMe'Bu₂). $(Me'_{3-n}Bu_n)SiN_3$ (n = 1, 1c or n = 2, 1d). According to X-ray structure analyses, 1c and 1d contain a planar SiN₄-ring with two methyl groups being coordinated to silicon and two silyl subsituents to the saturated N-atoms. © 2002 Elsevier Science B.V. All rights reserved.

Schlüsselwörter: Tetrazene; Silatetrazoline; Nitrogen; Silanimine; X-ray structure analysis

1. Einleitung

Die ungesättigten Stickstoffwasserstoffe Diazen HN=NH, Triazen HN=N-NH₂, Tetrazen H₂N-N= N-NH2-letzeres wird vorteilhaft aus dem Trimethylsilyl-Derivat durch Protolyse dargestellt-sind thermolabil und zersetzen sich bei -180 °C (Diazen) [1], bei tiefen Temperaturen (Triazen) [2] bzw. bei - 30 °C (Tetrazen) [3]. Die Silylazene Me₃SiN=NSiMe₃, Me₃SiN= $N-N(SiMe_3)_2$ (Me₃Si)₂N-N=N-N(SiMe₃)₂ sind im Falle des Diazens und Tetrazens wesentlich thermostabiler als die Wasserstoffverbindung selbst; sie zerfallen erst oberhalb -35 °C Me₃SiN=NSiMe₃ [4] bzw. oberhalb 160 °C trans-(Me₃Si)₂N-N=N-N(SiMe₃)₂ [5]. Da sie sich chemisch ähnlich wie die zugrundeliegenden Stickstoffwasserstoffverbindungen verhalten, benutzt man sie häufig als thermostabile Modellsubstanzen dieser Wasserstoffverbindungen. Das Trimethylsilyl-Derivat des Triazens ist demgegenüber hinsichtlich des Zerfalls in Distickstoff und Tris(trimethylsilyl)amin unerwartet thermolabil [6] und aus diesem Grund bis heute unbekannt. Obwohl das cis-2-Tetrazen sehr instabil ist, erweisen sich die cyclischen Tetrazene (Silatetrazoline) 1 als thermostabile Verbindungen.

Erstmals konnte 1978 durch Oxidation des silvlierten Lithiumhydrazids LiN(SiMe₃)-N(SiMe₃)-SiMe₂-N(Si-Me₃)-N(SiMe₃)Li mit Tosylazid ein Silatetrazolin des Typus 1 gewonnen werden [7].

1b R=SiMe₂/Bu 1c R=SiMe2tBu,R'=SiMetBu2 1d R=R'=SiMetBu2 Das Silatetrazolin 1a lässt sich auch durch Ther-

molyse des offenkettigen Tetrazens (Me₃Si)₂N-N=N-N(SiMe₃)(SiMe₂Cl) unter Me₃SiCl-Abspaltung erzeugen [8].

^{*} Corresponding author. Tel.: +49-69-798-29151; fax: +49-69-798-29260.

E-mail address: lerner@chemie.uni-frankfurt.de (H.-W. Lerner).

¹ Röntgenstrukturanalyse.

Schließlich lassen sich Silatetrazoline des Typus **1** durch [3 + 2]-Cycloaddition gemäß (3) aus Silaniminen $R_2Si=N-SiR_3$ —sich dimerisierende Silanimine lassen sich durch Thermolyse von aus dem Silatethen Me₂Si = C(SiMe₃)₂ und R₃SiN₃ erzeugten Silatriazolinen gewinnen—und Silylaziden R'₃SiN₃ synthetisieren [9–11].

Reaktionsgleichung (2)

Letzteres Verfahren lässt sich nach unseren Untersuchungen allgemein zur Synthese von Silatetrazolinen des Typus 1 nutzen. Die Synthese von 1a, 1b, 1c und 1d erfolgt zweckmäßig nach diesem Verfahren. So wird jeweils Me₂SiBr–CBr(SiMe₃)₂ in Et₂O entweder in Gegenwart der doppelten Molmenge an Me₃SiN₃, 'BuMe₂SiN₃ bzw. 'Bu₂MeSiN₃ mit *n*BuLi bei – 110 °C zur Reaktion gebracht (Darstellung von 1a, 1b bzw. 1d) oder zunächst in Gegenwart eines Äquivalents 'Bu₂MeSiN₃ bei der selben Temperatur metalliert und dann bei – 40 °C mit einem Äquivalent 'BuMe₂SiN₃ zum Silatetrazolin 1c weiter umgesetzt.

Beim Erwärmen der Reaktionslösung setzt sich dann das zunächst aus Me₂SiBr–CLi(SiMe₃)₂ gebildete Silaethen Me₂Si = C(SiMe₃)₂ mit den Silylaziden Me₃SiN₃, 'BuMe₂SiN₃ und 'Bu₂MeSiN₃ zu den

Tabelle 1 Kenndaten der Silatetrazoline 1a, 1b, 1c und 1d entsprechenden Silatriazolinen um, welche unter Abspaltung des Diazomethans (Me₃Si)₂CN₂ in die ihrerseits mit überschüssigem Silylazids Me₃SiN₃, 'BuMe₂SiN₃ bzw. 'Bu₂MeSiN₃ zu Silatetrazolinen des Typus **1** weitereagierenden Silanimine übergehen.

Anders als die offenkettigen Tetrazene thermolysieren die Silatetrazoline des Typus 1 unter Isomerisierung auf dem Wege (a) sowie unter Spaltung auf dem Wege (b).

Reaktionsgleichung (4)

Die Thermolyse des Silatetrazolins **1a** verläuft ausschließlich unter Isomerisierung gemäß (4a), während die Thermolyse des Silatetrazolins **1c** bzw. des Silatetrazolins **1d** allein unter Spaltung gemäß (4b) erfolgt. In Abwesenheit von Silaniminfängern thermolysiert das Silatetrazolin **1b** zu 81% nach (4a) unter Isomerisierung und zu 19% nach (4b) unter Spaltung. Jedoch beobachtet man bei der Thermolyse von **1b** in Gegenwart von Silaniminfängern zu 100% Spaltung gemäß (4b) [9].

Neben der Stammverbindung Tetrazen [3] sowie ihrem Trimetylsilyl-Derivat [12] wurden nur wenige cyclische Tetrazene strukturell charakterisiert [13–15]. Nachfolgend berichten wir über die Strukturen der ersten ausschließlich Silicium-substituierten cyclischen Tetrazene **1c** und **1d** und ihren Eigenschaften.

2. Ergebnisse und Diskussion

Die Silatetrazoline **1a**, **1b**, **1c** bzw. **1d** wurden gemäß (3) dargestellt und aus Pentan kristallisiert. Die in Tabelle 1 aufgeführten Silatetrazoline sind farblose

	1a	1b	1c	1d
Farbe	Farblos	Farblos	Farblos	Farblos
Schmelzpunkt (°)	89	92	106	162
Thermolyseverlauf vgl. Gleich. 4	ab 130 °C nach 4a	ab 160 °C nach 4a(81%)u.4b(19%)	ab 160 °C nach 4b	ab 160 °C nach 4b
¹ H-NMR $\delta =$	0.141(s;SiMe ₂),	0.189 (s;3SiMe ₂),	0.040 (s;SiMe), 0.201 (s;SiMe ₂),0.223	0.051(s;2SiMe), 0.237 (s;SiMe ₂), 1.088
	0.228(s;2SiMe ₃)	1.003 (s;2SitBu)	(s;SiMe ₂), 1.003 (s;SitBu), 1.093 (s;SitBu ₂)	$(s;2SitBu_2)$
²⁹ Si-NMR $\delta =$	3.6 (s;SiMe ₂), 6.6 (s;2SiMe ₃)	3.7 (s;SiMe ₂), 9.6 (s;2SiMe ₂ tBu)	3.9 (s;SiMe ₂), 8.7(s;2SiMetBu ₂), 9.9 (s;2SiMe ₂ tBu)	4.1 (s;SiMe ₂), 8.7(s;2SiMetBu ₂)
IR				
(vN-N) (cm ⁻¹)	1107	1110	1105	1108

Festsubstanzen, deren Schmelzpunkt mit der Größe des Silylsubstituenten zunimmt. Die Silatetrazoline des Typus 1 zeigen eine geringe Tendenz zur Reaktion mit Sauerstoff und reagieren sehr langsam mit Wasser. Während das Silatetrazolin 1b bei 160 °C mit Wasser durch Spaltung gemäß (4b) unter Bildung des entsprechenden Silanimin-Insertionsprodukten reagiert, wird bei 25 °C beim Einwirken von Wasser auf eine Lösung des Silatetrazolins 1a in Benzol die Bildung von Me₃SiO bzw. Me₂SiO-Gruppen enthaltende Siloxane sowie von NH₄N₃ beobachtet. Das Ammoniumazid NH₄N₃ wurde durch Röntgenstrukturanalyse identifiziert [16].

_ _ _ . .

Offenbar werden bei der Hydrolyse von **1a** die Silylreste durch Wasserstoff ersetzt, wobei sich möglicherweise das instabile *cis*-2-Tetrazen bildet, welches in NH_4N_3 übergeht. Ein ähnlicher Ablauf wird bei der Reaktion auch von mit größeren Resten substituierten Silatetrazolinen des Typus **1** mit HCl in Benzol beobachtet. Jedoch bilden sich hierbei die entsprechenden Chlorsilane [10].

Der Bau der Verbindungen 1c bzw. 1d konnte röntgenstrukturanalytisch geklärt werden. Geeignete Einkristalle von 1c und 1d wurden aus Lösungen der Verbindungen jeweils aus Pentan erhalten. Die Abb. 1 und 2 geben Darstellungen der Verbindungen im Kristall wieder. Sowohl Verbindung 1c als auch 1d bilden im Kristall eine monokline Elementarzelle (Punktgruppe $P2_1/c$), wobei 1c in der asymmetrischen Einheit zwei Moleküle aufweist. Zentrales Strukturelement sowohl von 1c als auch von 1b im Kristall ist ein planarer fünfgliedriger Ring, gebildet von vier Stickstoffatomen und einem Siliciumatom.

Der SiN₄-Heterocyclus weist sowohl für 1c als auch für 1d je zwei lange NN-Bindungen auf (1c: N(1)-N(2)) 1.422(2) Å, N(3)-N(4) 1.416(2) Å; 1d: N(1)-N(2)1.432(10) Å, N(3)-N(4) 1.440(10) Å) die NN-Einfachbindungen sowie je eine kurze NN-Bindung (1c: N(2)–N(3) 1.263(2) Å; 1d: N(2)–N(3) 1.264(11) Å) die als NN-Doppelbindung angesehen werden kann. Die jeweiligen Bindungslängen liegen im Bereich, der sowohl für das acylische Tetrazen trans-[(Me₃Si)₂N-N=N-N(SiMe₃)₂] [12] als auch für die cyclischen, arylsubstituierten Tetrazene gefunden wurde [13-15]. Im Vergleich hierzu besitzt das transkonfigurierte Tetrazen H2N-N=N-NH2 mit 1.205 Å eine kürzere NN-Doppelbindung [3]. Sowohl die SiN Abstände im Heterocyclus in als auch die Abstände von den dreifach koordinierten N-Atomen zu den Siliciumzentren der Substiuenten (1c: 1.7475(18) Å (Mittelwert); **1d**: 1.761(7) Å (Mittelwert)) liegen in einem Bereich von normalen SiN-Einfachbindungen. Die SiNNund NNN-Winkel sind sowohl im SiN₄-Heterocyclus von **1c** (Mittelwert SiNN: 110.68(12)°; Mittelwert NNN: 114.77(16)°) als auch von **1d** (Mittelwert SiNN: 110.5(5)°; Mittelwert NNN: 114.9(7)°) größer und der NSiN-Winkel im SiN₄-Ring von **1c** (NSiN: 89.09(8)°) bzw. von **1d** (NSiN: 89.2(3)°) kleiner als in einem idealen fünfgliedrigen Ring. Weitere wichtige Bindungslängen und Bindungswinkel sind in den Legenden zu Abb. 1 und 2 wiedergegeben.

3. Experimenteller Teil

Alle Untersuchungen wurden unter Ausschluss von Luft und Wasser unter Verwendung von Stickstoff (99.9996%ig) bzw. Argon (99.9996%ig) als Schutzgas durchgeführt. Die Reaktionsmedien wurden mit Natrium in Gegenwart von Benzophenon vorgetrocknet und vor Gebrauch über diesen Stoffen abdestilliert. Zur Verfügung standen Me₃SiCl, Me₂SiCl₂, Me₃SiN₃, HCl, nBuLi. Nach Literaturvorschriften wurden synthetisiert: Me₂SiBr-CBr(SiMe₃)₂ [17], ^tBu₂MeSiN₃ [18], ^tBuMe₂SiN₃ [19]. Für NMR-Spektren dienten Kernresonanzspektrometer Bruker AM 250. Bruker DPX 250 und Bruker AMX 400. ²⁹Si-NMR-Messungen wurden mit Hilfe eines INEPT-Pulsprogramms mit empirisch optimierten Parametern für die Siliciumsubstituenten aufgenommen. Für Massenspektren (electron impact) standen Geräte CH7 der Firma Varian, MS 80 RFA der Firma Kratos und MAT 950 der Firma Finnigan zur Verfügung.

3.1. Darstellung von 1a

Die Darstellung von **1a** erfolgt nach [9]. **1a**: Farbloser Feststoff, Schmp. 89 °C — ¹H-NMR (C₆D₆, iTMS): $\delta = 0.123$ (s; SiMe₃), 0.228 (s; 2 SiMe₃) — ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 0.16$ (s; 2 SiMe₃), 3.13 (s; SiMe₂) — ²⁹Si{¹H}-NMR (C₆D₆, iTMS): $\delta = 3.6$ (s; SiMe₂), 6.6 (s; 2 SiMe₃) — MS; m/z: 260 (M⁺; 30%) — Analysen: C₈H₂₄N₄Si₃ (260.6): Ber. C, 36.88; H, 9.28; N, 21.50. Gef. C, 35.43; H, 9.06; N, 18.47%.

3.2. Darstellung von 1b

Die Darstellung von **1b** erfolgt nach [9]. **1b**: Farbloser Feststoff, Schmp. 92 °C — ¹H-NMR (C₆D₆, iTMS): $\delta = 0.189$ (s; 3 SiMe₂), 1.003 (s; 2 Si'Bu) — ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = -4.27$ (s; 2 SiMe₂), 3.94 (s; SiMe₂), 18.8 (s, 2 CMe₃), 26.9 (s, 2 CMe₃) — ²⁹Si{¹H}-NMR (C₆D₆, iTMS): $\delta = 3.7$ (s; SiMe₂), 9.6 (s; 2 SiMe₂'Bu) — MS; m/z: 344 (M⁺; 8%) — Analysen: C₁₄H₃₆N₄Si₃ (344.7): Ber. C 48.78%, H 10.53% N 16.25%. Gef. C 47.48%, H 9.87%, N 16.18%.

Abb. 1. Struktur von 1c, ORTEP-Plot, thermische Schwingungsellipsoide 50%. Ausgewählte Bindungslängen [Å] und -winkel [°]: Si(1)-C(11) 1.859(2), Si(1)-C(12) 1.863(2), N(1)-Si(2) 1.7600(18), N(4)-Si(3) 1.7682(17), Si(2)-C(22) 1.866(2), Si(2)-C(21) 1.868(2), Si(2)-C(2) 1.895(2), C(2)-CH₃ 1.536(3)[Mittelwert], Si(3)-C(3) 1.876(2), Si(3)-C(35) 1.905(2), Si(3)-C(31) 1.908(2), C(31)-CH₃ 1.541(3)[Mittelwert], C(35)–CH₃ 1.537(3)[Mittelwert], N(1)-Si(1)-C(11) 114.71(10), N(4)-Si(1)-C(11) 114.21(9), N(1)-Si(1)-C(12) 114.02(10), N(4)-Si(1)-C(12) 114.53(9), C(11)-Si(1)-C(12) 109.26(10), N(2)-N(1)-Si(2) 114.53(13), Si(1)-N(1)-Si(2) 134.82(9), N(3)-N(4)-Si(3) 114.79(12),Si(1)-N(4)-Si(3) 134.38(10), N(1)-Si(2)-C(22), 104.86(10), N(1)-Si(2)-C(21) 109.76(9), C(22)-Si(2)-C(21) 111.35(13), N(1)-Si(2)-C(2) 111.89(9), C(22)-Si(2)-C(2) 109.74(11), C(21)-Si(2)-C(2) 109.22(10).

App. 2. Struktur von 1d, ORTEP-Plot, thermische Schwingungsellipsoide 50%. Ausgewählte Bindungslängen [Å] und -winkel [°]: N(1)-Si(2) 1.758(7), N(4)-Si(3) 1.760(7), Si(2)-C(2) 1.875(10), Si(2)-C(21) 1.887(11), Si(2)-C(25) 1.927(12), Si(3)-C(3) 1.872(10), Si(3)-C(35) 1.919(10), Si(3)–C(31) 1.932(11), C(21)-CH₃ 1.558(16)[Mittelwert], C(25)-CH₃ 1.558(17)[Mittelwert], C(31)-CH₃ 1.548(16)[Mittelwert], C(35)-CH₃ 1.548(16)[Mittelwert], N(4)-Si(1)-C(12) 113.8(5), N(1)-Si(1)-C(12) 113.7(5), N(4)-Si(1)-C(11) 115.3(5), N(1)–Si(1)–C(11) 114.4(5), C(12)–Si(1)–C(11)109.4(5), N(2)-N(1)-Si(2) 114.2(5), Si(2)-N(1)-Si(1) 135.1(4), N(3)-N(4)-Si(3) 114.0(5), Si(3)-N(4)-Si(1) 135.2(4), N(1)-Si(2)-C(2) 103.9(4), N(1)-Si(2)-C(21) 109.1(5), C(2)-Si(2)-C(21) 109.0(6), N(1)-Si(2)-C(25) 108.7(4), C(2)-Si(2)-C(25) 109.2(6), C(21)-Si(2)-C(25) 116.2(5), N(4)-Si(3)-C(3) 104.8(4), N(4)-Si(3)-C(35) 110.1(4), C(3)-Si(3)-C(35) = 108.6(5), N(4)-Si(3)-C(31)107.4(4), C(3)-Si(3)-C(31) 109.0(5), C(35)-Si(3)-C(31) 116.4(4).

3.3. Darstellung von 1c

Zu einer auf -110 °C gekühlten Lösung von 1.57 g (4.31 mmol) Me₂SiBr-CBr(SiMe₃)₂ und 1.57 g (4.31

mmol) 'Bu₂MeSiN₃ in 25 ml Et₂O werden 2.7 ml (4.32 mmol) einer Lösung von *n*BuLi in Hexan getropft. Man belässt die Reaktionsmischung zunächst 1 h bei -78 °C, erwärmt sie danach langsam auf -40 °C und tropft nun zur klaren Reaktionslösung 1.06 g (6.00 mmol) 'BuMe₂SiN₃ in 5 ml Et₂O. Die Reaktionsmischung wird dann langsam auf Raumtemperatur er-Nach Abkondensieren wärmt. aller flüchtigen Bestandteile im Ölpumpenvakuum bei Raumtemperatur, Lösen des Rückstands in 20 ml Pentan und Abfiltrieren der Lösung erhält man bei -25 °C 1c in Form von farblosen Quadern (Ausbeute: 0.89 g, 53%). 1c: Schmp. 106 °C — ¹H-NMR (C₆D₆, iTMS): $\delta =$ 0.021 (s; SiMe), 0.195 (s; SiMe₂), 0.211 (s; SiMe₂), 1.005 (s; Si'Bu), 1.097 (s; Si'Bu₂) — ${}^{13}C{}^{1}H$ -NMR (C₆D₆, iTMS): $\delta = -7.21$ (s; 2 SiMe), -4.25 (s; SiMe₂), 3.99 (s; SiMe₂), 18.8 (s, CMe₃), 26.9 (s, CMe₃), 21.0 (s, 2 *C*Me₃), 28.6 (s, 2 *CMe*₃) - ²⁹Si{¹H}-NMR (C₆D₆, iTMS): $\delta = 3.9$ (s; SiMe₂), 8.7 (s; SiMe^tBu₂), 9.9 (s; SiMe^t₂Bu) — MS; m/z: 386 (M⁺; 10%), 329 (M⁺ -^tBu; 13%) — Analysen: $C_{17}H_{42}N_4Si_3$ (386.8): Ber. C, 52.79; H, 10.94; N, 14.48. Gef. C, 52.53; H, 10.43; N, 14.74%. Röntgenstrukturanalyse vgl. Abb. 1.

3.4. Darstellung von 1d

Zu einer auf – 110 °C gekühlten Lösung von 1.18 g (3.14 mmol) Me₂SiBr-CBr(SiMe₃)₂ und 1.46 g (7.40 mmol) 'Bu₂MeSiN₃ in 25 ml Et₂O werden 2 ml (3.20 mmol) einer Lösung von nBuLi in Hexan getropft. Man belässt die Reaktionsmischung zunächst 1 h bei -78 °C und erwärmt sie danach langsam auf Raumtemperatur. Nach Abkondensieren aller flüchtigen Bestandteile im Ölpumpenvakuum bei Raumtemperatur, Lösen des Rückstands in 20 ml Pentan und Abfiltrieren der Lösung erhält man bei -25 °C 1d in Form farbloser Stäbchen (Ausbeute: 0.81 g, 60%). 1d: Schmp. 162 °C — ¹H-NMR (C₆D₆, iTMS): $\delta = 0.029$ (s; 2 SiMe), 0.227 (s; SiMe₂), 1.100 (s; 2 Si'Bu₂) — ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = -7.17$ (s; 2 SiMe), 4.03 (s; SiMe₂), 21.0 (s, 4 CMe_3), 29.0 (s, 4 CMe_3) — ²⁹Si{¹H}-NMR (C₆D₆, iTMS): $\delta = 4.1$ (s; SiMe₂), 8.7 (s; 2 SiMe^{*t*}Bu₂) — MS; m/z: 428 (M⁺; 11%), 371 $(M^+ - {}^tBu; 10\%)$ — Analysen: $C_{20}H_{48}N_4Si_3$ (428.9): Ber. C, 56.01; H, 11.20; N, 13.06. Gef. C, 55.63; H, 11.42; N, 13.24%. Röntgenstrukturanalyse vgl. Abb. 2.

3.5. Reaktion von 1a mit Wasser

Eine Lösung von 0.193 g (0.742 mmol) **1a** in 2 ml Benzol wird feuchter Luft ausgesetzt. Nach einer Wochen haben sich 0.032 g (0.533 mmol, 72%) farbloser Kristalle gebildet, die durch Röntgenstrukturanalyse [16] als NH_4N_3 identifiziert wurden. Die Lösung wurde NMR-spektroskopisch untersucht, wobei Signale, die Me₃SiO- und Me₂SiO-Gruppen zugeordnet werden können, erkannt: ¹H-NMR (C₆D₆, iTMS): $\delta = 0.150$ (s; SiMe₂), 0.109 (s; SiMe₃).

3.6. Reaktion von 1b mit Wasser

Eine Lösung von 0.097 g (0.281 mmol) **1b** in 0.6 ml Benzol und 10? µl H₂O wird im abgeschmolzenen NMR-Rohr 48 h auf 160 °C erwärmt. Nach ¹H-NMR-Spektrum haben sich nahezu quantitativ 'BuMe₂SiN₃ und Me₂SiOH–NH–SiMe'₂Bu gebildet. Nach Abkondensieren aller flüchtigen Bestandteile im Ölpumpenvakuum verbleibt farbloses, flüssiges Me₂SiOH–NH– SiMe'₂Bu als Rückstand. Me₂SiOH–NH–SiMe'₂Bu: Sdp. 32 °C/0.01 Torr. ¹H-NMR (C₆D₆, iTMS): $\delta = 0.126$ (s; SiMe₂), 0.197 (s; SiMe₂), 0.923 (s; Si'Bu) — ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = -2.53$ (s; SiMe₂), 2.93 (s; SiMe₂), 18.6 (s, CMe₃), 26.3 (s, CMe₃) — ²⁹Si{¹H}-

Tabelle 2

Ausgewählte parameter der röntgenstrukturanalyse der verbindungen 1c und 1d

	1c	1d
Summenformel	C ₁₇ H ₄₂ N ₄ Si ₃	C20H48N4Si3
Farbe	Farblos	Farblos
Molekülmasse	386.82	428.89
Temperatur (K)	100	100
Kristallsystem	Monoklin	Monoklin
Raumgruppe	$P2_1/c$	$P2_1/c$
a (Å)	12.0202(5)	14.977(2)
b (Å)	13.1666(5)	12.764(1)
<i>c</i> (Å)	30.490(2)	14.547(2)
α (°)	90	90
β (°)	90.016(4)	92.880(1)
γ (°)	90	90
$V(Å^3)$	4825.5(4)	2777.4(6)
Ζ	8	4
$D_{\rm calc}$, g cm ⁻³	1.065	1.026
$\mu(MoK\alpha), mm^{-1}$	0.204	0.183
F(000)	1712	952
Kristallgröße (mm)	$0.31 \times 0.30 \times 0.14$	$0.34 \times 0.13 \times 0.12$
Diffraktometer	STOE-IPDS-II	
θ -Bereich	1.55 to 26.64	1.36 to 25.12
h_{\min}, h_{\max}	-14, 15	-17, 17
k_{\min}, k_{\max}	-16, 16	-15, 15
l_{\min}, l_{\max}	-38, 38	-17, 17
Gesamtzahl der reflexe	71216	24951
Zahl unabhängiger Reflexe	10106	4901
Zahl beobachteter Reflexe, $[I > 2\sigma(I)]$	8607	3343
Absorptionskorrektur	Empirisch [20]	
Strukturlösung	Direkte Methoden [21]	
Strukturverfeinerung	Full-matrix least-squares [22]	
T_{\min}, T_{\max}	0.9395, 0.9720	0.9405, 0.9784
Data/restraints/parameters	10106/0/434	4901/0/245
Goodness of fit on F^2	0.941	1.091
Final <i>R</i> indices $[I > 2\sigma(I)]$, <i>R</i> ₁ , <i>wR</i> ₂	0.0316, 0.0676	0.1304, 0.3384
R indices (all data), R_1 , wR_2	0.0404, 0.0697	0.1697, 0.3688
Restelektronendichte	0.277, -0.283	1.637, -0.634

NMR (C₆D₆, iTMS): $\delta = 4.3$ (s; SiMe₂), 15.7 (s; SiMe₂'Bu) — MS; m/z: 205 (M⁺).

3.7. Röntgenstrukturanalyse

Für die Strukturbestimmung von 1c und 1d wurde ein STOE-IPDS-II Diffraktometer benutzt. Alle Strukturen wurden mit direkten Methoden gelöst. Alle Nicht-Wasserstoffatome wurden anisotrop verfeinert, die H-Atome wurden mit dem Reitermodell und fixierten isotropen Auslenkungsparametern verfeinert [20–22]. Die Abb. 1 bis 2 zeigen ORTEP-Bilder der Strukturen.

Angaben zu den Röntgenstrukturanalysen sind in Tabelle 2 zusammengestellt.

4. Ergänzungsmaterial

Die kristallographischen Daten (ohne Strukturfaktoren) der in dieser Veröffentlichung beschriebenen Struktur wurden als CCDC nos. 172371 (1c) und 172372 (1d) beim Cambridge Crystallographic Data Centre hinterlegt. Kopien der Daten können kostenlos bei folgender Adresse in Großbritannien angefordert werden: The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (Fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk or www: http://www.ccdc. cam.ac.uk).

Anerkennung

Wir danken Herrn Professor Dr M. Wagner für die großzügige Unterstützung dieser Untersuchungen.

Literatur

 [1] (a) N. Wiberg, G. Fischer, H. Bachhuber, Chem. Ber. 107 (1974) 1456;

(b) N. Wiberg, G. Fischer, H. Bachhuber, Z. Naturforsch. 84b (1979) 1385.

- [2] E. Hayon, M. Simic, J. Am. Chem. Soc. 94 (1972) 42.
- [3] (a) N. Wiberg, H. Bayer, H. Bachhuber, Angew. Chem. 87 (1975) 202;
 - (b) M. Veith, G. Schlemmer, Z. Anorg. Allg. Chem. 494 (1982) 7.
- [4] (a) N. Wiberg, W.-Ch. Joo, W. Uhlenbrock, Angew. Chem. 80 (1968) 661;
 (b) N. Wiberg, W. Uhlenbrock, I. Organomet. Chem. 70 (1974)
- (b) N. Wiberg, W. Uhlenbrock, J. Organomet. Chem. 70 (1974) 239.
- [5] (a) N. Wiberg, W. Uhlenbrock, Angew. Chem. 82 (1970) 47;
 (b) N. Wiberg, H. Bayer, R. Meyers, Chem. Ber. 112 (1979) 2718.
- [6] N. Wiberg, H.J. Pracht, J. Organomet. Chem. 40 (1972) 289.
- [7] N. Wiberg, G. Ziegeleder, Chem. Ber. 111 (1978) 2123.
- [8] N. Wiberg, Adv. Metallorg. Chem. 24 (1985) 1.
- [9] N. Wiberg, P. Karampatses, Ch.-K. Kim, Chem. Ber. 120 (1987) 1213.

- [10] H.-W. Lerner, Dissertation München, 1994.
- [11] N. Wiberg, H.-W. Lerner, in: N. Auner, J. Weis (Eds.), Organosilicon Chemistry II, VCH, Weinheim, 1996, p. 405.
- [12] M. Veith, Acta Crystallogr. B 31 (1975) 678.
- [13] G.A. Miller, S.W. Lee, W.C. Trogler, Organometallics 8 (1989) 738.
- [14] A. Frenzel, J.J. Buffy, D.R. Powell, T. Müller, R. West, Chem. Ber. 130 (1997) 1579.
- [15] J. Niesmann, U. Klingebiel, M. Noltemeyer, J. Organomet. Chem. 521 (1996) 191.
- [16] Einzelheiten zu der Kristallstrukturuntersuchung von NH₄N₃ können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eg-

genstein-Leopoldshafen unter Angabe der Hinterlegungsnummer CSD-412211 angefordert werden.

- [17] (a) N. Wiberg, G. Preiner, O. Schieda, G. Fischer, Chem. Ber. 114 (1981) 3505;
 (b) N. Wiberg, G. Preiner, O. Schieda, Chem. Ber. 114 (1981) 2087.
- [18] N. Wiberg, Ch.-K. Kim, K. Schurz, Chem. Ber. 119 (1986) 2980.
- [19] D.R. Parker, L.H. Sommer, J. Am. Chem. Soc. 98 (1976) 618.
- [20] R.H. Blessing, Acta Crystallogr. A 51 (1995) 33-38.
- [21] G.M. Sheldrick, Acta Crystallogr. A 46 (1990) 467-473.
- [22] G.M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures, University of Göttingen, Göttingen, Germany, 1997.